

## **New Adsorption Cycles for Carbon Dioxide Capture and Concentration**

James A. Ritter, Armin D. Ebner, Steven P. Reynolds, Hai Du, Amal Mehrotra Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208

## **Background**

- > generally accepted that increasing global temperatures over recent decades due to increasing atmospheric concentrations of greenhouse gases, i.e., CH<sub>4</sub>, N<sub>2</sub>O, and particularly CO,
- carbon sequestration probably newest means being studied to manage CO<sub>2</sub> in the environment
- > most likely options for CO, sequestration
- chemical and physical absorption
- ❖ low-temperature distillation
- \* gas separation membranes and
- physical and chemical adsorption

## **Objectives**

- study new pressure swing adsorption (PSA) cycles for CO<sub>2</sub> capture and concentration at high temperature
- two key features of these new PSA cycles
  - > heavy reflux (HR) PSA concept
  - > use of a hydrotalcite like (HTlc) adsorbent that captures CO<sub>2</sub> reversibly at high temperatures simply by changing pressure
- bench-scale experimental and theoretical program being carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799)
- nine tasks being carried out over 3-year period

#### **Tasks**

- Task 1. Construct Fixed Bed Unit (High Temperature System)
- Task 2. Modify Existing PSA System to 4-Beds (Low Temperature System)
- Task 3. Perform Experiments in the Fixed Bed Unit
- Task 4. Perform Experiments in the 4-Bed PSA Unit
- Task 5. Modify and Validate Existing PSA Code
- Task 6. Carry Out Rapid Adsorbent Characterization
  Task 7. Carry out Simulations with Validated PSA
- Code
  Task 8. Carry out Detailed Adsorbent
- Characterization
- Task 9. Carry out Economic Analyses

## **Significant Accomplishments**

<u>Publications</u> <u>Invention Disclosures</u>

➤ 6 in print ➤

➤ 4 in preparation PhD Students Produced

> 3

Presentations

≥ 4 submitted

► 16 New Projects

**>** 4

**Book Chapters** 

**>** 1

## **CO<sub>2</sub> Uptake and Release** from K-Promoted HTlc

How does CO<sub>2</sub> interact with K-promoted HTlc?

- recent studies describe adsorption and desorption behavior of CO<sub>2</sub> using simple Langmuir and linear driving force models
- none of them provide detailed mechanism of CO<sub>2</sub> equilibrium and kinetic behavior
- mechanistic understanding and realistic model needed for PSA process design
- proposed mechanism that describes CO<sub>2</sub> dynamics of uptake and release via reversible non-equilibrium kinetic model

Non-Equilibrium Reversible Kinetic Model



 $A \equiv CO_2(ad)$   $E \equiv Mg_6Al_2K_2O_{10}$   $B \equiv Mg_6Al_2K_2O_9(CO_3)$   $C \equiv Mg_6Al_2K_2O_8(CO_3)_2$ 





T&P Dependent Model vs. Experiment at 400 °C



# **Equilibrium Theory Model** of Heavy Reflux PSA

Why is an equilibrium theory model important?

- isothermal model with no non-ideal effects predicts the ultimate performance possible
- many analyses in the literature; none describe HR PSA cycles suitable for CO<sub>2</sub> capture
- information from such models indispensible to HR PSA Cycle understanding and limitations
- carried out fundamental analyses of HR PSA cycles, exposing interesting extreme cases

Schematic of Shock Wave and Simple Wave Development During Typical HR PSA Cycle



Variation of Heavy Component Recovery  $(\Omega_A)$  and Purity  $(\Xi_A)$  with  $\Delta \tau$  (Throughput) at Constant  $\Psi$  (Purge to Feed Ratio)



## Heavy and Dual Reflux PSA Cycles

Why is the HR PSA concept important?

- CO<sub>2</sub> is the heavy component in flue gas and must be enriched to greater than 95 vol%
- just like in distillation, heavy component enriched with heavy reflux and light component enriched with light reflux
- nearly all PSA cycles designed to purify only the light component using light reflux
- understanding of heavy reflux PSA cycles lacking and sorely needed

Maximum Performance Based on CO<sub>2</sub> Purity



#### Stripping PSA Cycle with HR and EQ

Fraction of CnD Effluent Used as HR with Remaining CnD Effluent Taken as Heavy Product



#### Simplest HR cycle, with one equalization step between beds 3 and 6.

# **Unequal Step-Time Scheduling for PSA Cycles**

Why is PSA cycle scheduling important?

- feed step time can be lengthened → increases feed throughout
- pressure changing step times can be shortened
   → increases feed throughput or productivity
- feed can be delivered simultaneously to multiple beds
- multiple configurations possible, depending on the number of beds, and the number and types of steps

## 5-Bed 5-Step Stripping PSA Cycle with LR and HR from CnD

Two Equalization steps

| Ŧ   | HR      | 1 | 2  | CnD      | I | Г  | LR       |   | 21 | I        | P |    | LPP/Fee | d  |     |
|-----|---------|---|----|----------|---|----|----------|---|----|----------|---|----|---------|----|-----|
| led | Feed    |   |    | HR       | 1 | 2  | CnD      | I | Г  | LR       |   | 21 | - 1     | 11 | LPP |
|     | Idle 11 |   |    | LPP/Feed |   |    | HR       | 1 | 2  | CnD      | 1 | LR |         |    | 21  |
|     | LR      |   | 21 | I        | P |    | LPP/Feed |   |    | HR       | 1 | 2  | CnD     | 1  | LR  |
|     | CnD     | I |    | LR       |   | 21 | I        | P |    | LPP/Feed |   |    | HR      | 1  | 2   |

## 5-Bed 5-Step Stripping PSA Cycles with LR and HR from CnD: Effect of Equalization

 $Q_F = 5 \text{ SLPM}, \gamma = 0.02, t_{evc} = 500 \text{ sec}, P_H = 138 \text{ kPa}$ 

| Cycle | Number<br>of EQ<br>Steps | Throughput<br>(L STP/hr/kg) | Effective<br>Pressure<br>Ratio | Purity<br>(%) | Recovery<br>(%) |
|-------|--------------------------|-----------------------------|--------------------------------|---------------|-----------------|
| I     | 0                        | $\theta = 57.6$             | 12                             | 98.0          | 48.5            |
| II    | 1                        | 1.5θ                        | 6.5                            | 97.0          | 36.1            |
| Ш     | 1                        | 1.75θ                       | 6.5                            | 97.2          | 32.1            |
| IV    | 2                        | θ                           | 4.7                            | 96.8          | 48.0            |
| V     | 2                        | 2θ                          | 4.7                            | 98.5          | 7.5             |